USGS Report No. OSL/3710

United States Department of the Interior

U.S. GEOLOGICAL SURVEY Reston, Virginia 20192

REPORT OF CALIBRATION of Aerial Mapping Camera March 30, 2017

Camera type: Lens type: Nominal focal Length:	Zeiss RMK Top 15* Zeiss Pleogon A3/4 153 mm	Camera serial no.: Lens serial no.: Maximum aperture: Test aperture:	145846 145892 f/4 f/4
Submitted by:	Forsvarets Materielverk- Swedish	n Defence Admin.	
	Stockholm, Sweden		

Reference:

These measurements were made on Agfa glass plates, 0.19 inch thick, with spectroscopic emulsion type APX Panchromatic, developed in D-19 at 68° F for 3 minutes with continuous agitation. These photographic plates were exposed on a multicollimator camera calibrator using a white light source rated at approximately 5200K.

I. Calibrated Focal Length: 152.990 mm

II. Lens Distortion

Field angle:	7.5°	15°	22.7°	30°	35°	40°	
Symmetric radial (µm) Decentering tangential (µm)	0 0	-1 1	-1 2	0 4	0 6	1 8	
Symmetric radial distortion	Decentering distortion			Calibrated principal point			
$\begin{array}{rcl} {\rm K}_0 &=& 0.1643 {\rm E}{\rm -}04 \\ {\rm K}_1 &=& -0.1623 {\rm E}{\rm -}08 \\ {\rm K}_2 &=& 0.1957 {\rm E}{\rm -}13 \\ {\rm K}_3 &=& 0.0000 \\ {\rm K}_4 &=& 0.0000 \end{array}$	$\begin{array}{rcl} {\bf P}_1 &=& 0.4756 {\bf E}{\textbf -}06 \\ {\bf P}_2 &=& -0.8285 {\bf E}{\textbf -}07 \\ {\bf P}_3 &=& 0.0000 \\ {\bf P}_4 &=& 0.0000 \end{array}$				х _р Ур	= 0.002 mm = 0.011 mm	

The values and parameters for Calibrated Focal Length (CFL), Symmetric Radial Distortion $(K_0, K_1, K_2, K_3, K_4)$, Decentering Distortion (P_1, P_2, P_3, P_4) , and Calibrated Principal Point [point of symmetry] (x_p, y_p) were determined through a least-squares Simultaneous Multiframe Analytical Calibration (SMAC) adjustment. The x and y-coordinate measurements utilized in the adjustment of the above parameters have a standard deviation (σ) of ±3 microns.

^{*} Equipped with Forward Motion Compensation

III. Lens Resolving Power in cycles/mm

Area-weighted average	e resolution	n: 102	2				
Field angle:	0°	7.5°	15°	22.7°	<u>30°</u>	35°	40°
Radial Lines	134	159	134	113	95	95	95
Tangential Lines	134	134	134	113	95	80	80

The resolving power is obtained by photographing a series of test bars and examining the resultant image with appropriate magnification to find the spatial frequency of the finest pattern in which the bars can be counted with reasonable confidence. The series of patterns has spatial frequencies from 5 to 268 cycles/mm in a geometric series having a ratio of the 4th root of 2. Radial lines are parallel to a radius from the center of the field, and tangential lines are perpendicular to a radius.

IV. Filter Parallelism

The two surfaces of the USGS TOP 15 test filter KL-F (60%) No. 142399 and KL-F (36%) filter No. 149767 are within 10 seconds of being parallel. The USGS TOP 15 test filter, in conjunction with the internal "B" filter, was used for the calibration.

V. Shutter Calibration

Indicated Time (sec)	Rise Time (μ sec)	Fall Time (µ	¹ / ₂ Width Time (ms)	Nom. Speed (sec)	Efficiency (%)
1/100	2284	2096	13.01	1/90	89
1/200	1076	1046	6.36	1/180	90
1/300	699	700	4.21	1/260	90
1/400	522	515	3.12	1/360	90
1/500	429	423	2.48	1/450	89

The effective exposure times were determined with the lens at aperature f/4. The method is considered accurate within 3 percent. The technique used is described in International Standard ISO 516:1999(E).

VI. Magazine Platen

The platen mounted in Zeiss TM-C film magazine No. 147466 does not depart from a true plane by more than 13 μ m (0.0005 in).

The platen for this film magazine is equipped with an identification marker that will register "148018" in the data strip area for each exposure.

USGS Report No. OSL/3710

The Method of measuring these distances is considered accurate within 0.003 mm

Note: For GPS applications, the nominal entrance pupil distance from the focal plane is 254mm with a 10 mm filter thickness. Additional filter thickness will increase entrance pupil distance by 0.34 X added thickness.

IX. Stereomodel Flatness

 FMC Magazine No:
 147466

 Platen ID:
 148018

Base/Height ratio: 0.6 **Maximum angle of field tested:** 40°

Stereomodel Test Point Array (values in micrometers)

The values shown on the diagram are the average departures from flatness (at negative scale) for two computer-simulated stereo models. The values are based on comparator measurements on Agfa Avitone P3p copy film made from Agfa Aviphot Pan 200 film exposures. These measurements are considered accurate to within 5 μ m.

X. System Resolving Power on film in cycles/mm

Area-weighted average resolution:		48		Film:	Pan 200		
Field angle:	0°	7.5°	15°	22.7°	30°	35°	40°
Radial Lines	57	57	57	48	48	48	48
Tangential Lines	57	57	57	48	48	40	40

This aerial mapping camera calibration report supersedes the previously issued USGS Report No. OSL/3604, dated August 6, 2012.

Kyan Longhenry Long Term Archive Project Manager Climate and Land Use Change