United States Department of the Interior

U.S. GEOLOGICAL SURVEY

Reston, Virginia 20192

REPORT OF CALIBRATION
January 05, 2017
of Aerial Mapping Camera

Camera type:	Zeiss RMK Top 15*	Camera serial no.:	149977
Lens type:	Zeiss Pleogon A3/4	Lens serial no.:	150021
Nominal focal Length:	153 mm	Maximum aperture:	$\mathrm{f} / 4$
		Test aperture:	$\mathrm{f} / 4$

Submitted by:	FMV Defense Material Administration
	Stockholm, Sweden

Reference:

These measurements were made on Agfa glass plates, 0.19 inch thick, with spectroscopic emulsion type APX Panchromatic, developed in D-19 at $68^{\circ} \mathrm{F}$ for 3 minutes with continuous agitation. These photographic plates were exposed on a multicollimator camera calibrator using a white light source rated at approximately 5200 K .

I. Calibrated Focal Length: $\quad 153.262 \mathrm{~mm}$

II. Lens Distortion

Field angle:	7.5°	15°	22.7°	30°	35°	40°
Symmetric radial $(\mu \mathrm{m})$	-2	-4	-4	-2	1	4
Decentering tangential $(\mu \mathrm{m})$	0	1	2	4	6	8

Symmetric radial distortion	Decentering distortion	Calibrated principal point
$\mathrm{K}_{0}=0.1265 \mathrm{E}-03$	$\mathrm{P}_{1}=0.4901 \mathrm{E}-06$	$\mathrm{x}_{\mathrm{p}}=-0.001 \mathrm{~mm}$
$\mathrm{~K}_{1}=-0.1528 \mathrm{E}-07$	$\mathrm{P}_{2}=0.3454 \mathrm{E}-07$	$\mathrm{Y}_{\mathrm{P}}=0.000 \mathrm{~mm}$
$\mathrm{~K}_{2}=0.3370 \mathrm{E}-12$	$\mathrm{P}_{3}=0.0000$	
$\mathrm{~K}_{3}=0.0000$	$\mathrm{P}_{4}=0.0000$	
$\mathrm{~K}_{4}=0.0000$		

The values and parameters for Calibrated Focal Length (CFL), Symmetric Radial Distortion ($\mathrm{K}_{0}, \mathrm{~K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}, \mathrm{~K}_{4}$), Decentering Distortion ($\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}$), and Calibrated Principal Point [point of symmetry] ($\mathrm{x}_{\mathrm{p}}, \mathrm{y}_{\mathrm{p}}$) were determined through a least-squares Simultaneous Multiframe Analytical Calibration (SMAC) adjustment. The x and y -coordinate measurements utilized in the adjustment of the above parameters have a standard deviation (σ) of ± 3 microns.

[^0]
III. Lens Resolving Power in cycles/mm

Area-weighted average resolution: 76

Field angle:	0°	7.5°	15°	22.7°	30°	35°	40°
Radial Lines	113	134	134	95	80	80	67
Tangential Lines	113	134	113	80	48	48	40

The resolving power is obtained by photographing a series of test bars and examining the resultant image with appropriate magnification to find the spatial frequency of the finest pattern in which the bars can be counted with reasonable confidence. The series of patterns has spatial frequencies from 5 to 268 cycles $/ \mathrm{mm}$ in a geometric series having a ratio of the 4 th root of 2 . Radial lines are parallel to a radius from the center of the field, and tangential lines are perpendicular to a radius.

IV. Filter Parallelism

The two surfaces of the USGS TOP 15 test filter KL-F (60%) No. 142399 are within 10 seconds of being parallel. This filter, in conjunction with the internal "B" filter, was used for the calibration.

V. Shutter Calibration

Indicated Time (sec)	Rise Time $(\mu \mathrm{sec})$	Fall Time $(\mu$	$1 / 2$ Width Time (ms)	Nom. Speed (sec)	Efficiency $(\%)$
$1 / 100$	3426	3546	11.15	$1 / 110$	80
$1 / 200$	1969	2098	5.24	$1 / 250$	76
$1 / 300$	1338	1240	3.61	$1 / 360$	78
$1 / 400$	938	966	2.65	$1 / 490$	78
$1 / 500$	747	762	2.11	$1 / 610$	78

The effective exposure times were determined with the lens at aperature $f / 4$. The method is considered accurate within 3 percent. The technique used is described in International Standard ISO 516:1999(E).

VI. Magazine Platen

The platen mounted in Zeiss T-MC film magazines Nos. 149875 and 151620 do not depart from a true plane by more than $13 \mu \mathrm{~m}(0.0005 \mathrm{in})$.

The platens for these film magazines are equipped with identification markers that will register " 150380 " for magazine No. 149875 and " 151220 " for magazine No. 151620 in the data strip area for each exposure.
VII. Principal Point and Fiducial Mark Coordinates

VIII. Distances Between Fiducial marks

Corner fiducials (diagonals) $\quad 1-2: \quad 319.607 \mathrm{~mm} \quad 3-4: \quad 319.611 \mathrm{~mm}$
Lines joining these markers intersect at an angle o $89^{\circ} 59^{\prime} 52^{\prime \prime}$
Midside fiducials 5-6: 225.993 mm
7-8: $\quad 226.007 \mathrm{~mm}$
Lines joining these markers intersect at an angle o $89^{\circ} 59^{\prime} 59^{\prime \prime}$
Corner fiducials (perimeter) $\quad 1-3: \quad 226.005 \mathrm{~mm} \quad 2-3: \quad 225.991 \mathrm{~mm}$
1-4: $\quad 225.995 \mathrm{~mm} \quad 2-4: \quad 226.001 \mathrm{~mm}$
The Method of measuring these distances is considered accurate within 0.003 mm
Note: For GPS applications, the nominal entrance pupil distance from the focal plane is 254 mm with a 10 mm filter thickness. Additional filter thickness will increase entrance pupil distance by 0.34 X added thickness.

IX. Stereomodel Flatness

FMC Magazine No: $149875 \quad$ Base/Height ratio: 0.6
Platen ID: 150380
Maximum angle of field tested: 40°

The values shown on the diagram are the average departures from flatness (at negative scale) for two computer-simulated stereo models. The values are based on comparator measurements on Agfa Avitone P3p copy film made from Agfa Aviphot Pan 200 film exposures. These measurements are considered accurate to within $5 \mu \mathrm{~m}$.

X. System Resolving Power on film in cycles/mm

Area-weighted average resolution: 42
Film: Pan 200

Field angle:	0°	7.5°	15°	22.7°	30°	35°	40°
Radial Lines	57	57	57	48	48	48	34
Tangential Lines	57	57	57	40	34	34	20

IX. Stereomodel Flatness

Magazine No: 151620
Platen ID: 151220

Base/Height ratio: 0.6

Maximum angle of field tested: 40°

The values shown on the diagram are the average departures from flatness (at negative scale) for two computer-simulated stereo models. The values are based on comparator measurements on Agfa Avitone P3p copy film made from Agfa Aviphot Pan 200 film exposures. These measurements are considered accurate to within $5 \mu \mathrm{~m}$.

X. System Resolving Power on film in cycles/mm

Area-weighted average resolution: 42
Film: Pan 200

Field angle:	0°	7.5°	15°	22.7°	30°	35°	40°
Radial Lines	57	67	57	57	40	48	34
Tangential Lines	57	57	57	48	34	28	20

Long Term Archive Project Manager Climate and Land Use Change

[^0]: * Equipped with Forward Motion Compensation

