United States Department of the Interior

U.S. GEOLOGICAL SURVEY Reston, Virginia 20192

REPORT OF CALIBRATION of Aerial Mapping Camera December 01, 2016

Camera type:	Zeiss RMK Top 30	Camera serial no.:	143092
Lens type:	Zeiss Topar A3	Lens serial no.:	143122
Nominal focal Length:		Maximum aperture:	f/4
-8		Test aperture:	f/5.6
Submitted by:	RIGC (NI)		

Crumlin Co., Antrim, Northern Ireland

Reference:

These measurements were made on Agfa glass plates, 0.19 inch thick, with spectroscopic emulsion type APX Panchromatic, developed in D-19 at 68° F for 3 minutes with continuous agitation. These photographic plates were exposed on a multicollimator camera calibrator using a white light source rated at approximately 5200K.

I. <u>Calibrated Focal Length:</u> 305.101 mm

This measurement is considered accurate within 0.005 mm

II. Radial Distortion:

		D_c for azimuth angle					
D_{C}	D_{C}	0° A-C	9	0° A-D	180° B-D	270° B-C	
μm		μm		μm	μm	μm	
1		3		1	-1	1	
1		-3		5	-2	3	
-1		-6		4	-5	4	
	1	μm 1 1	μm μm 1 3 1 -3	$ \begin{array}{c cccc} \overline{D}_c & & 0^{\circ} \text{ A-C} & 9 \\ \mu m & & \mu m \\ 1 & 3 \\ 1 & -3 \\ 1 & & 6 \\ \end{array} $	$ \overline{D}_{c} \qquad 0^{\circ} \text{ A-C} \qquad 90^{\circ} \text{ A-D} \\ \mu m \qquad \mu m \\ 1 \qquad 3 \qquad 1 \\ 1 \qquad -3 \qquad 5 \\ 1 \qquad -5 \qquad -5 \\ 1 \qquad -5 \qquad -5 \\ $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

The radial distortion is measured for each of four radii of the focal plane separated by 90° in azimuth. To minimize plotting error due to distortion, a full least-squares solution is used to determine the calibrated

focal length. D_c is the average distortion for a given field angle. Values of distortion D_c based on the calibrated focal length referred to the calibrated principal point (point of symmetry) are listed for azimuths 0°, 90°, 180°, and 270°. The radial distortion is given in micrometers and indicates the radial displacement away from the center of the field. These measurements are considered accurate within 5µm.

III. Lens Resolving Power in cycles/mm

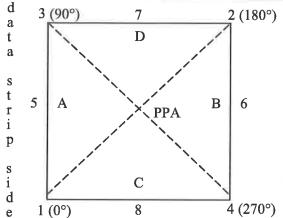
Area-weighted average resolution: 74						
Field angle:	0°	7.5°	15°	22.7°		
Radial Lines	68	96	81	57		
Tangential Lines	68	81	81	57		

The resolving power is obtained by photographing a series of test bars and examining the resultant image with appropriate magnification to find the spatial frequency of the finest pattern in which the bars can be counted with reasonable confidence. The series of patterns has spatial frequencies from 2.5 to 135 cycles/mm in a geometric series having a ratio of the 4th root of 2. Radial lines are parallel to a radius from the center of the field, and tangential lines are perpendicular to a radius.

IV. <u>Filter Parallelism</u>

The two surfaces of the USGS TOP 15 test filter KL-F (60%) No. 142399 are within 10 seconds of being parallel. This filter, in conjunction with the internal "B" filter, was used for the calibration.

V. Shutter Calibration


Indicated Time	Rise Time	Fall	1/2 Width Time	Nom. Speed	Efficiency
(sec)	(µ sec)	Time (µ	(ms)	(sec)	(%)
1/100	3587	3648	11.38	1/110	80
1/200	1756	1740	5.59	1/220	80
1/300	1242	1276	3.61	1/350	78
1/400	934	868	2.67	1/470	79
1/500	701	712	2.04	1/620	78

The effective exposure times were determined with the lens at aperature f/4. The method is considered accurate within 3 percent. The technique used is described in International Standard ISO 516:1999(E).

VI. <u>Magazine Platen</u>

N/A

VII. Principal Point and Fiducial Mark Coordinates

Positions of all points are referenced to the principal point of autocollimation (PPA) as origin. The diagram indicates the orientation of the reference points when the camera is viewed from the back, or a contact positive with the emulsion up. The data strip is to the left.

a							
e	1 (0°)	8	4 (270°)		X coordinate (m	um)	Y coordinate (mm)
	Indicated p	orincipal point, c	orner fiducials		0.007		-0.004
	Indicated p	rincipal point, n	nidside fiducials		0.003		0.003
	Principal p	oint of autocolli	mation (PPA)		0.000		0.000
	Calibrated	principal point (point of symmetry	y)	-0.015		0.002
		Fiducial Marl	ζS				
		1			-112.993		-112.999
		2			113.012		112.996
		3			-112.992		113.002
		4	(ä.		112.995		-112.999
		5			-112.992		0.011
		6			113.005		-0.005
		7			0.008		112.992
		8			-0.002		-113.003
VIII.	Distances	Between Fidu	<u>cial marks</u>				
Corne	er fiducials (diagonals)	1-2:	319.613 m	m	3-4:	319.604 mm
Lines	joining thes	e markers inters	ect at an angle o 8	9° 59' 58'	•		
	ide fiducials joining thes	e markers inters	5-6: ect at an angle o 9	225.996 mi 0° 00' 07'		7-8:	225.995 mm
Corne	er fiducials (j	perimeter)	1-3:	226.001 m	m	2-3:	226.005 mm
			1-4:	225.988 mi	m	2-4:	225.995 mm

The Method of measuring these distances is considered accurate within 0.003 mm

Note: For GPS applications, the nominal entrance pupil distance from the focal plane is 284mm with a 10 mm filter thickness. Additional filter thickness will increase entrance pupil distance by 0.34 X added thickness.

Ryan Longhenry Long Term Archive Project Manager Climate and Land Use Change