

United States Department of the Interior

U.S. GEOLOGICAL SURVEY

Reston, Virginia 20192

REPORT OF CALIBRATION
December 17, 2015
of Aerial Mapping Camera

Camera type:	Zeiss RMK Top 15*	Camera serial no.:	142814
Lens type:	Zeiss Pleogon A3	Lens serial no.:	142814
Nominal focal Length:	153 mm	Maximum aperture:	$\mathrm{f} / 4$
		Test aperture:	$\mathbf{f} / 4$

Submitted by: RIGC (NI)
Crumlin Co., Antrim, Northern Ireland

Reference:

These measurements were made on Agfa glass plates, 0.19 inch thick, with spectroscopic emulsion type APX Panchromatic, developed in D-19 at $68^{\circ} \mathrm{F}$ for 3 minutes with continuous agitation. These photographic plates were exposed on a multicollimator camera calibrator using a white light source rated at approximately 5200 K .
I. Calibrated Focal Length: $\quad 153.655 \mathrm{~mm}$

II. Lens Distortion

Field angle:	7.5°	15°	22.7°	30°	35°	40°
Symmetric radial $(\mu \mathrm{m})$	0	-1	0	1	1	0
Decentering tangential $(\mu \mathrm{m})$	0	0	1	2	3	5

Symmetric radial distortion		Decentering distortion
$\mathrm{K}_{0}=0.2506 \mathrm{E}-04$		$\mathrm{P}_{1}=-0.4647 \mathrm{E}-07$
$\mathrm{~K}_{1}=-0.6276 \mathrm{E}-08$	$\mathrm{P}_{2}=-0.2845 \mathrm{E}-06$	
$\mathrm{~K}_{2}=0.2932 \mathrm{E}-12$	$\mathrm{P}_{3}=0.0000$	
$\mathrm{~K}_{3}=0.000$	$\mathrm{P}_{4}=0.0000$	
$\mathrm{~K}_{4}=0.0000$		

Calibrated principal point
$\mathrm{x}_{\mathrm{p}}=0.005 \mathrm{~mm}$
$\mathrm{y}_{\mathrm{P}}=0.006 \mathrm{~mm}$

$$
\mathrm{K}_{2}=0.2932 \mathrm{E}-12
$$

$$
P_{3}=0.0000
$$

$$
\mathrm{K}_{4}=0.0000
$$

The values and parameters for Calibrated Focal Length (CFL), Symmetric Radial Distortion ($\mathrm{K}_{0}, \mathrm{~K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}, \mathrm{~K}_{4}$), Decentering Distortion ($\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}$), and Calibrated Principal Point [point of symmetry] ($\mathrm{x}_{\mathrm{p}}, \mathrm{y}_{\mathrm{p}}$) were determined through a least-squares Simultaneous Multiframe Analytical Calibration (SMAC) adjustment. The x and y -coordinate measurements utilized in the adjustment of the above parameters have a standard deviation (σ) of ± 3 microns.

[^0]
III. Lens Resolving Power in cycles/mm

Area-weighted average resolution: 99

Field angle:	0°	7.5°	15°	22.7°	30°	35°	40°
Radial Lines	159	159	134	95	95	95	80
Tangential Lines	159	159	113	113	95	80	80

The resolving power is obtained by photographing a series of test bars and examining the resultant image with appropriate magnification to find the spatial frequency of the finest pattern in which the bars can be counted with reasonable confidence. The series of patterns has spatial frequencies from 5 to 268 cycles $/ \mathrm{mm}$ in a geometric series having a ratio of the 4th root of 2. Radial lines are parallel to a radius from the center of the field, and tangential lines are perpendicular to a radius.

IV. Filter Parallelism

The two surfaces of the USGS TOP 15 test filter KL-F (60\%) No. 142399 are within 10 seconds of being parallel. This filter, in conjunction with the internal " B " filter, was used for the calibration.

V. Shutter Calibration

Indicated Time (sec)	Rise Time ($\mu \mathrm{sec}$)	$\begin{gathered} \text { Fall } \\ \text { Time }(\mu \end{gathered}$	$1 / 2$ Width Time (ms)	Nom. Speed (sec)	Efficiency (\%)
1/100	3608	3560	11.84	1/100	81
1/200	1904	2184	5.57	1/230	77
1/300	1273	1282	3.65	1/350	78
1/400	947	907	2.72	1/470	79
1/500	759	752	2.15	1/600	78

The effective exposure times were determined with the lens at aperature $\mathrm{f} / 4$. The method is considered accurate within 3 percent. The technique used is described in International Standard ISO 516:1999(E).

VI. Magazine Platen

N/A
VII. Principal Point and Fiducial Mark Coordinates

Indicated principal point, corner fiducials
Indicated principal point, midside fiducials
Principal point of autocollimation (PPA)
Calibrated principal point (point of symmetry)
Positions of all points are referenced to the principal point of autocollimation (PPA) as origin. The diagram indicates the orientation of the reference points when the camera is viewed from the back, or a contact positive with the emulsion up. The data strip is to the left.

Fiducial Marks		
1	-112.978	-112.996
2	113.002	113.012
3	-112.982	112.995
4	113.019	-112.996
5	-112.975	-0.002
6	113.006	0.007
7	0.009	113.005
8	0.010	-112.995

VIII. Distances Between Fiducial marks

Corner fiducials (diagonals) $\quad 1-2: \quad 319.604 \mathrm{~mm}$
3-4: $\quad 319.607 \mathrm{~mm}$
Lines joining these markers intersect at an angle o $89^{\circ} 59^{\prime} 52^{\prime \prime}$
Midside fiducials
5-6: $\quad 225.981 \mathrm{~mm}$
7-8: $\quad 226.000 \mathrm{~mm}$
Lines joining these markers intersect at an angle o $89^{\circ} 59^{\prime} 53^{\prime \prime}$
Corner fiducials (perimeter) 1-3: 225.991 mm
2-3: $\quad 225.984 \mathrm{~mm}$
1-4: $\quad 225.998 \mathrm{~mm}$
2-4: $\quad 226.008 \mathrm{~mm}$
The Method of measuring these distances is considered accurate within 0.003 mm
Note: For GPS applications, the nominal entrance pupil distance from the focal plane is 254 mm with a 10 mm filter thickness. Additional filter thickness will increase entrance pupil distance by 0.34 X added thickness.

Ryan Longhenry
Long Term Archive Project Manager Climate and Land Use Change

[^0]: * Equipped with Forward Motion Compensation

