

# United States Department of the Interior 

U.S. GEOLOGICAL SURVEY<br>Reston, Virginia 20192

REPORT OF CALIBRATION<br>of Aerial Mapping Camera

November 19, 2015

| Camera type: | Zeiss RMK Top 30* | Camera serial no:: | 144171 |
| :--- | :--- | :--- | :--- |
| Lens type: | Zciss Topar A3 | Lens serial no.: | 144186 |
| Nominal focal Length: | 305 mm | Maximum aperture: | [/5.6 |
|  |  | Test aperture: | $\mathrm{C} / 5.6$ |

## Submitted by: Institut National de Cartographie et de Teledectio <br> Alger, Algerie

## Reference:

These measurements were made on Agla glass plates, 0.19 inch thick, with spectroscopic emulsion type APX Panchromatic, developed in D-19 at $68^{\circ}$ F for 3 minutes with continuous agitation. These photographic plates were exposed on a multicollimator camera calibrator using a white light source rated at approximately 5200 K .
I. Calibrated Focal Length: $\quad 305.528 \mathrm{~mm}$

This measurement is considered accurate within 0.005 mm

## II. Radial Distortion:

| Field angle | $\bar{D}_{C}$ | $D_{\text {c }}$. for azimulh angle |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $0^{\circ} \mathrm{A}-\mathrm{C}$ | $90^{\circ} \mathrm{A}-\mathrm{D}$ | $180^{\circ} \mathrm{B}-\mathrm{D}$ | $270^{\circ} \mathrm{B}-\mathrm{C}$ |
| degrees | $\mu \mathrm{m}$ |  | ${ }^{147}$ | H 41 | H1m |
| 7.5 | 4 | 5 | 5 | 1 | 5 |
| 15 | 4 | 0 | 9 | 2 | 5 |
| 22.7 | -3 | -8 | 1 | -8 | 2 |

The radial distortion is measured for each of four radii of the focal plane separated by $90^{\circ}$ in azimuth. To minimize plotting error due to distortion, a full least-squares solution is used to determine the calibrated focal length. $D_{C}$ is the average distortion for a given field angle. Values of distortion $D_{C}$ based on the calibrated focal length referred to the calibrated principal point (point of symmetry) are listed for azimuths $0^{\circ}, 90^{\circ}, 180^{\circ}$, and $270^{\circ}$. The radial distortion is given in micrometers and indicates the radial displacement away from the center of the field. These measurements are considered accurate within $5 \mu \mathrm{~m}$.

[^0]
## III. Lens Resolving Power in cycles/mm

Area-weighted average resolution: 76

| Field angle: | $0^{\circ}$ | $7.5^{\circ}$ | $15^{\circ}$ | $22.7^{\circ}$ |
| :--- | :---: | :---: | :---: | :---: |
| Radial Lines | 81 | 96 | 81 | 57 |
| Tangential Lines | 81 | 96 | 81 | 57 |

The resolving power is obtained by photographing a series of test bars and examining the resultant image with appropriate magnification to find the spatial frequency of the finest pattern in which the bars can be counted with reasonable confidence. The series of patterns has spatial frequencies from 2.5 to 135 cycles $/ \mathrm{mm}$ in a geometric series having a ratio of the 4 th root of 2 . Radial lines are parallel to a radius from the center of the field, and tangential lines are perpendicular to a radius.

## IV. Filter Parallelism

The two surfaces of the USGS TOP 15 test filter KL-F ( $60 \%$ ) No. 142399 are within 10 seconds of being parallel. This filter, in conjunction with the interna! "B" filter, was used for the calibration.
V. Shutter Calibration

| Indicated Time <br> $(\mathrm{sec})$ | Rise Time <br> $(\mu \mathrm{sec})$ | Fall <br> Time $(\mu$ | $1 / 2$ Width Time <br> $(\mathrm{mins})$ | Nom. Speed <br> $(\mathrm{sec})$ | Efficiency <br> $(\%)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1 / 100$ | 4135 | 4141 | 10.94 | $1 / 120$ | 76 |
| $1 / 200$ | 1847 | 1868 | 5.33 | $1 / 240$ | 78 |
| $1 / 300$ | 1143 | 1161 | 3.68 | $1 / 340$ | 78 |
| $1 / 400$ | 881 | 912 | 2.67 | $1 / 470$ | 79 |
| $1 / 500$ | 679 | 706 | 2.12 | $1 / 590$ | 80 |

The effective exposure times were determined with the lens at aperature 1/5.6. The method is considered accurate within 3 percent. The technique used is described in International Standard ISO 516:1999(E).

## VI. Magazine Platen

N/A
VII. Principal Point and Fiducial Mark Coordinates


Indicated principal point, corner liducials
Indicated principal point, midside liducials

| $X$ coordinate $(\mathrm{mm})$ | Y coordinate $(\mathrm{mmn})$ |
| :---: | :---: |
|  | 0.003 |
| -0.007 | -0.009 |
| 0.000 | 0.000 |
| -0.043 | 0.009 |

Principal point of autocollimation (PPA)
Calibrated principal point (point of symmetry)
Positions of all points are referenced to the principal point of autocollimation (PPA) as origin. The diagram indicates the orientation of the reference points when the camera is viewed from the back, or a contact positive with the emulsion up. The data strip is to the left.

## Fiducial Marks

| 1 | -112.999 | -113.002 |
| :--- | ---: | ---: |
| 2 | 112.999 | 113.002 |
| 3 | -112.990 | 112.999 |
| 4 | 113.006 | -113.002 |
| 5 | -112.994 | -0.007 |
| 6 | 112.994 | -0.011 |
| 7 | -0.002 | 112.995 |
| 8 | -0.012 | -112.987 |

## VIII. Distances Between Fiducial marks

Corner fiducial (diagonals) 1-2; 319.614 mm
Lines joining these markers intersect at an angle $089^{\circ} 59^{\prime} 55^{\prime \prime}$
Midside fiducials 5-6: 225.988 mm
Lines joining these markers intersect at an angle o $89^{\circ} 59^{\prime} 55^{\prime \prime}$
Corner fiducials (perimeter) $\quad 1-3: \quad 226.001 \mathrm{~mm} \quad 2-3: 225.990 \mathrm{~mm}$
1-4: $226.005 \mathrm{~mm} \quad 2-4: \quad 226.004 \mathrm{~mm}$
.The Method of measuring these distances is considered accurate within 0.003 mm
Note: For GPS applications, the nominal entrance pupil distance from the focal plane is 262 mm with a 10 mm filter thickness. Additional filter thickness will increase entrance pupil distance by 0.34 X added thickness.


Ryan Longhenry
Long Term Archive Project Manager
Climate and Land Use Change


[^0]:    * Equipped with Forward Motion Compensation

